(本小题满分13分)已知函数
(1)求函数的最小正周期;
(2)求使函数取得最大值的
集合。
在△ABC中,内角A、B、C对边的边长分别是a、b、c.已知c=2,C=.
(1)若△ABC的面积等于,求a、b的值;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且2S=(a+b)2-c2,求tanC的值.
在△ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判断三角形的形状.
已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°.
(1)求证:(a-b)⊥c;
(2)若|ka+b+c|>1 (k∈R),求k的取值范围.
已知点G为△ABC的重心,过G作直线与AB、AC两边分别交于M、N两点,且=x
,
=y
,求
+
的值.