已知圆N:和抛物线C:,圆的切线与抛物线C交于不同的两点A,B,(1)当直线的斜率为1时,求线段AB的长;(2)设点M和点N关于直线对称,问是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.
设数列的前n项和为,为等比数列,且, (1)求数列和的通项公式; (2)设,求数列的前n项和.
在中,角的对边分别为,设S为△ABC的面积,满足4S=. (1)求角的大小; (2)若且求的值.
递减的等差数列的前n项和为,若 (1)求的等差通项; (2)当n为多少时,取最大值,并求出其最大值; (3)求
在△ABC中,角A,B,C所对的边分别为a,b,c且满足c sinA="a" cosC. (1)求角C的大小; (2)求sinA –cos(B+C)的取值范围.
在等比数列 中,,,求和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号