如图,已知四棱锥的正视图和侧视图均是直角三角形,俯视图为矩形,N、F分别是SC、AB的中点,
,
.
(1)求证:SA⊥平面ABCD
(2)求证:NF∥平面SAD;
(3)求二面角A-BN-C的余弦值.
(本小题满分10分 )选修4—4:坐标系与参数方程
在直角坐标系中,直线
的参数方程为
为参数),以该直角坐标系的原点
为极点,
轴的正半轴为极轴的极坐标系下,圆
的方程为
.
(Ⅰ)求直线的普通方程和圆
的圆心的极坐标;
(Ⅱ)设直线和圆
的交点为
、
,求弦
的长.
(本小题满分10分 )选修4—1:几何证明选讲
如图,为⊙
的直径,直线
与⊙
相切于点
,
垂直
于点
,
垂直
于点
,
垂直
于点
,连接
,
.
证明:(Ⅰ);
(Ⅱ).
(本小题满分12分)已知函数.
(I)讨论函数的单调区间;
(II)当时,若函数
在区间
上的最大值为
,求
的取值范围.
(本小题满分12分)在平面直角坐标系中,已知圆心在
轴上,半径为4的圆
位于
轴右侧,且与
轴相切.
(I)求圆的方程;
(II)若椭圆的离心率为
,且左右焦点为
.试探究在圆
上是否存在点
,使得
为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).
(本小题满分12分)如图,矩形中,对角线
的交点为
⊥平面
为
上的点,且
.
(I)求证:⊥平面
;
(II)求三棱锥的体积.