已知函数.
(Ⅰ)若点在角
的终边上,求
的值;
(Ⅱ)若,求
的值域.
已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.
设p:实数x满足<0,其中a<0;q:实数x满足x2-x-6≤0或x2+2x-8>0,且
p是
q的必要不充分条件,求a的取值范围.
如图,在正四面体中,
分别是棱
的中点.
(1)求证:四边形是平行四边形;
(2)求证:平面
;
(3)求证:平面
.
已知函数(其中
,无理数
).当
时,函数
有极大值
.
(1)求实数的值;
(2)求函数的单调区间;
(3)任取,
,证明:
.
已知椭圆C的中心在原点,焦点y在轴上,焦距为,且过点M
.
(1)求椭圆C的方程;
(2)若过点的直线l交椭圆C于A、B两点,且N恰好为AB中点,能否在椭圆C上找到点D,使△ABD的面积最大?若能,求出点D的坐标;若不能,请说明理由.