某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如下表所示:
![]() 消耗量 资源 |
甲产品(每吨) |
乙产品(每吨) |
资源限额(每天) |
煤(t) |
9 |
4 |
360 |
电力(kw·h) |
4 |
5 |
200 |
劳动力(个) |
3 |
10 |
300 |
利润(万元) |
6 |
12 |
|
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
已知分别是椭圆
的左,右顶点,点
在椭圆
上,且直线
与直线
的斜率之积为
.
(1)求椭圆的标准方程;
(2)点为椭圆
上除长轴端点外的任一点,直线
,
与椭圆的右准线分别交于点
,
.
①在轴上是否存在一个定点
,使得
?若存在,求点
的坐标;若不存在,说明理由;
②已知常数,求
的取值范围.
如图,四棱锥的底面
是直角梯形,
,
,且
,顶点
在底面
内的射影恰好落在
的中点
上.
(1)求证:;
(2)若,求直线
与
所成角的 余弦值;
(3)若平面与平面
所成的二面角为
,求
的值.
已知圆.
(1)若直线过点
,且与圆
相切,求直线
的方程;
(2)若圆的半径为4,圆心
在直线
:
上,且与圆
内切,求圆
的方程.
已知抛物线的焦点为双曲线
的一个焦点,且两条曲线都经过点
.
(1)求这两条曲线的标准方程;
(2)已知点在抛物线上,且它与双曲线的左,右焦点构成的三角形的面积为4,求点
的坐标.
如图,斜四棱柱的底面
是矩形,平面
⊥平面
,
分别为
的中点.
求证:
(1);(2)
∥平面
.