某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如下表所示:
![]() 消耗量 资源 |
甲产品(每吨) |
乙产品(每吨) |
资源限额(每天) |
煤(t) |
9 |
4 |
360 |
电力(kw·h) |
4 |
5 |
200 |
劳动力(个) |
3 |
10 |
300 |
利润(万元) |
6 |
12 |
|
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
设f(x)是定义在R上的偶函数,其图像关于直线x=1对称,对任意x1、x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0.
(1)求f()、f(
);
(2)证明f(x)是周期函数;
(3)记an=f(2n+),求
若a>0,b>0,a3+b3=2,求证:a+b≤2,ab≤1。
已知i,m、n是正整数,且1<i≤m<n.
(1)证明: niA<miA
(2)证明: (1+m)n>(1+n)m
证明下列不等式:
(1)若x,y,z∈R,a,b,c∈R+,则z2≥2(xy+yz+zx)
(2)若x,y,z∈R+,且x+y+z=xyz,则≥2(
)
已知x,y,z∈R,且x+y+z=1,x2+y2+z2=,
证明:x,y,z∈[0,]