已知i,m、n是正整数,且1<i≤m<n.
(1)证明: niA<miA
(2)证明: (1+m)n>(1+n)m
(本小题满分12分)
给定两个命题,:对任意实数
都有
恒成立;
:关于
的方程
有两个正根;如果
或
为真,
且
为假,求实数
的取值范围.
(本小题满分12分)已知函数f(x)=ln(x+1)-x.
⑴求函数f(x)的单调递减区间;
⑵若,证明:
.
(本小题满分12分) 已知a为实数,。
⑴求导数;
⑵若,求
在[-2,2] 上的最大值和最小值;
⑶若在(-∞,-2)和[2,+∞]上都是递增的,求a的取值范围。
(本小题满分10分)已知f(x)=x3+ax2+bx+c,在x=1与x=-2时,都取得极值。
⑴求a,b的值;
⑵若x[-3,2]都有f(x)>
恒成立,求c的取值范围。
(本小题满分10分)已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行.
⑴求f(x)的解析式;
⑵求函数g(x)=f(x2)的单调递增区间.