某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本
(万元)与年产量
(吨)之间的函数关系式可以近似地表示为
,已知此生产线年产量最大为210吨。
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求每吨产品平均最低成本;
(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
已知直线L:x-2y-5=0与圆C:x2+y2=50.求:
(1)交点A,B的坐标;(2)△AOB的面积
求圆心在直线3x+y-5=0上,并且经过原点和点(4,0)的圆的方程
已知正项数列
在抛物线
上;数列
中,点
在过点(0,1),以
为斜率的直线上。
(1)求数列
的通项公式;
(2)若
成立,若存在,求出k值;若不存在,请说明理由;
(3)对任意正整数
,不等式
恒成立,求正数
的取值范围。
作为绍兴市2013年5.1劳动节系列活动之一的花卉展在镜湖湿地公园举行.现有一占地1800平方米的矩形地块,中间三个矩形设计为花圃(如图),种植有不同品种的观赏花卉,周围则均是宽为1米的赏花小径,设花圃占地面积为
平方米,矩形一边的长为
米(如图所示)
(1)试将
表示为
的函数;
(2)问应该如何设计矩形地块的边长,使花圃占地面积
取得最大值.
在等比数列
中,已知
,公比
,等差数列
满足
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,求数列
的前n项和
.