设函数f(x)=loga(ax+).(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,+∞)的单调性并证明.
(本小题满分14分)
已知函数f(x)=-x3+bx2+cx+bc,
(1)若函数f(x)在x=1处有极值-,试确定b、c的值;
(2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围;
(3)记g(x)=|f′(x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.
(参考公式:x3-3bx2+4b3=(x+b)(x-2b)2)
(本小题满分14分)
已知椭圆G与双曲线有相同的焦点,且过点
.
(1)求椭圆G的方程;
(2)设、
是椭圆G的左焦点和右焦点,过
的直线
与椭圆G相交于A、B两点,请问
的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线
的方程,若不存在,请说明理由.
(本小题满分14分)
如图,直二面角中,四边形
是正方形,
为CE上的点,且
平面
.
(1)求证:平面
;
(2)求二面角的余弦值.
(本小题满分13分)为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持,该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:
评估得分 |
[50,60) |
[60,70) |
[70,80) |
[80,90] |
评定类型 |
不合格 |
合格 |
良好 |
优秀 |
贷款金额(万元) |
0 |
200 |
400 |
800 |
为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下:
(1)估计该系统所属企业评估得分的中位数及平均分;
(2)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?
.已知圆以
为圆心,
为半径,过点
作直线
与圆
交于不同两点
(Ⅰ)若求直线
的方程;
(Ⅱ)当直线的斜率为
时,过直线
上一点
作圆
的切线
为切点
使
求点
的坐标;
(Ⅲ)设的中点为
试在平面上找
一点
,使
的长为定值.