选修4-1:几何证明选讲
如图,圆O的半径OB垂直于直径AC,M为OA上一点,BM的延长线交圆O于N,过N点的切线交CA的延长线于P。
(1)求证:PM2=PA·PC
(2)若圆O的半径为,OA=
OM,求MN的长。
已知抛物线的焦点为
,过焦点
且不平行于
轴的动直线
交抛物线于
,
两点,抛物线在
、
两点处的切线交于点
.
(Ⅰ)求证:,
,
三点的横坐标成等差数列;
(Ⅱ)设直线交该抛物线于
,
两点,求四边形
面积的最小值.
设.
(Ⅰ)确定的值,使
的极小值为0;
(II)证明:当且仅当时,
的极大值为3.
某校有一贫困学生因病需手术治疗,但现在还差手术费万元,团委计划在全校开展爱心募捐活动,为了增加活动的趣味性吸引更多学生参与,特举办“摇奖100%中奖”活动.凡捐款10元者,享受一次摇奖机会,如图是摇奖机的结构示意图,摇奖机的旋转盘是均匀的,扇形区域
所对应的圆心角的比值分别为1:2:3:4:5.相应区域分别设立一、二、三、四、五等奖,奖品分别为价值分别为5元、4元、3元、2元、1元的学习用品.摇奖时,转动圆盘片刻,待停止后,固定指针指向哪个区域(边线忽略不计)即可获得相应价值的学习用品(如图指针指向区域
,可获得价值3元的学习用品).
(Ⅰ)预计全校捐款10元者将会达到1500人次,那么除去购买学习用品的款项后,剩余款项是否能帮助该生完成手术治疗?
(II)如果学生甲捐款20元,获得了两次摇奖机会,求他获得价值6元的学习用品的概率.
用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台.如图,在四棱台中,下底
是边长为
的正方形,上底
是边长为1的正方形,侧棱
⊥平面
,
.
(Ⅰ)求证:平面
;
(II)求平面与平面
夹角的余弦值.
已知中,角
、
、
的对边分别为
、
、
,角
不是最大角,
,外接圆的圆心为
,半径为
.
(Ⅰ)求的值;
(Ⅱ)若,求
的周长