.(本题14分)在数列中,
,
,
.
(Ⅰ)证明数列是等比数列;
(Ⅱ)求数列的前
项和
.
.(本小题满分12分)
为了调查某中学高三学生的身高情况,在该中学高三学生中随机抽取了40名同学作为样本,测得他们的身高后,画出频率分布直方图如下:
(I)估计该校高三学生的平均身高;
(II)从身高在180cm(含180cm)以上的样本中随机抽取2人,记身高在185~190cm之间的人数为X,求X的分布列和数学期望。
(本小题满分12分)
如图,正方形ABCD所在平面与等腰三角形EAD所在平面相交于AD,平面CDE
(I)求证:平面ADE;
(II)在线段BE上存在点M,使得直线M与平面EAD所成角的正弦值为,试确定点M的位置。
.(本小题满分12分)
已知在中,a,b,c分别是角A,B,C所对的边,且满足
(I)求角A的大小;
(II)若,求b,c的长。
(本小题满分12分)
已知数列满足
(I)求的取值范围;
(II)是否存在,使得
?证明你的结论。
(本小题满分12分)
如图,双曲线与抛物线
相交于
,直线AC、BD的交点为P(0,p)。
(I)试用m表示
(II)当m变化时,求p的取值范围。