.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
如图所示的自动通风设施.该设施的下部是等腰梯形,其中
米,梯形的高为
米,
米,上部
是个半圆,固定点
为
的中点.△
是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),
是可以沿设施边框上下滑动且始终保持和
平行的伸缩横杆.
(1)设与
之间的距离为
米,试将三角通风窗
的通风面积
(平方米)表示成关于
的函数
;
(2)当与
之间的距离为多少米时,三角通风窗
的通风面积最大?并求出这个最大面积。
(本小题满分12分)已知正方形的边长为2,
分别是边
的中点.
(1)在正方形内部随机取一点
,求满足
的概率;
(2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为
,求随机变量
的分布列与数学期望
.
(本小题满分12分)已知函数.
(1)求的最小正周期和单调增区间;
(2)设,若
求
的大小.
已知函数f(x)满足2f(x+2)=f(x),当x∈(0,2)时,f(x)=lnx+ax (),当x∈(―4,―2)时,f(x)的最大值为―4.
(1)求x∈(0,2)时,f(x)的解析式;
(2)是否存在实数b使得不等式对于
恒成立?若存在,求出实数b的取值集合;若不存在,请说明理由.
已知数列{an}满足a1=1,a2=3,且,
.
(1)证明:数列{a2k}()为等比数列;
(2)求数列{an}的通项公式;
(3)设(λ为非零整数).试确定λ的值,使得对任意
都有
成立.
已知函数.
(1)当x∈[0,4]时,求f(x)的最大值和最小值;
(2)若x∈[0,4],使
≥0成立,求实数a的取值范围.