已知过抛物线的焦点,斜率为
的直线交抛物线于
,
两点,且
.
(1)求该抛物线的方程;
(2)为坐标原点,是否存在平行于
的直线
,使得直线
与抛物线有公共点,且
直线
与
的距离为
?若存在,求出直线
的方程;若不存在,说明理由.
(本小题满分12分)
为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m.
(1)求直线EF的方程;
(2)应如何设计才能使草坪的占地面积最大?
(本小题满分14分)
从某学校高一年级名学生中随机抽取
名测量身高,据测量被抽取的学生的身高全部介于
和
之间,将测量结果按如下方式分成八组:第一组
.第二组
;…第八组
,右图
是按上述分组方法得到的条形图.
(1)根据已知条件填写下面表格:
组 别 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
样本数 |
![]() |
(2)估计这所学校高一年级名学生中身高在
以上(含
)的人数;
(3)在样本中,若第二组有人为男生,其余为女生,第七组有
人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?
(本小题满分12分)已知函数
,
(1)求的最小正周期;
(2)若,
, 求
的值.
已知函数在x=1处取得极值,在x=2处的切线平行于向量
(1)求a,b的值,并求的单调区间;
(2)是否存在正整数m,使得方程在区间(m,m+1)内有且只有两个不等实根?若存在,求出m的值;若不存在,说明理由.
已知函数的最大值是2,
其图象经过点
.
(1)求的解析式;
(2)已知,且
,
求的值.