设,圆
:
与
轴正半轴的交点为
,与曲线
的交点为
,直线
与
轴的交点为
.
(1)用表示
和
;
(2)求证:;
(3)设,
,求证:
.
(本小题满分12分)数列的前
项和记为
,
,
(
).
(1)求的通项公式;
(2)等差数列的各项为正,其前
项和为
,且
,又
,
,
成等比数列,求
.
(本小题满分12分)设函数,其中向量
,
.
(1)求函数的最小正周期与单调递减区间;
(2)在中,
、
、
分别是角
、
、
的对边,已知
,
,
的面积为
,求
外接圆半径
.
(本小题满分12分)设是定义在
上的奇函数,函数
与
的图象关于
轴对称,且当
时,
.
(1)求函数的解析式;
(2)若对于区间上任意的
,都有
成立,求实数
的取值范围.
如图,O为坐标原点,点F为抛物线C1:的焦点,且抛物线C1上点P处的切线与圆C2:
相切于点Q.
(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;
(Ⅱ)当正数变化时,记S1 ,S2分别为△FPQ,△FOQ的面积,求
的最小值.
(本小题满分12分)如图甲,⊙的直径
,圆上两点
在直径
的两侧,使
,
.沿直径
折起,使两个半圆所在的平面互相垂直(如图乙),
为
的中点,
为
的中点.
为
上的动点,根据图乙解答下列各题:
(1)求点到平面
的距离;
(2)在弧上是否存在一点
,使得
∥平面
?若存在,试确定点
的位置;若不存在,请说明理由.