游客
题文

(本题12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.

(1)当∠AOB=30°时,求弧AB的长度;
(2)当DE=8时,求线段EF的长;
(3)在点B运动过程中,当交点E在O,C之间时,是否存在以点E、C、F为顶点的三角形与△AOB相
似,若存在,请求出此时点E的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

图1表示的是某书店今年 1 ~ 5 月的各月营业总额的情况,图2表示的是该书店"党史"类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店 1 ~ 5 月的营业总额一共是182万元,观察图1、图2,解答下列问题:

(1)求该书店4月份的营业总额,并补全条形统计图.

(2)求5月份"党史"类书籍的营业额.

(3)请你判断这5个月中哪个月"党史"类书籍的营业额最高,并说明理由.

如图,二次函数 y = ( x - 1 ) ( x - a ) ( a 为常数)的图象的对称轴为直线 x = 2

(1)求 a 的值.

(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.

如图是由边长为1的小正方形构成的 6 × 4 的网格,点 A B 均在格点上.

(1)在图1中画出以 AB 为边且周长为无理数的 ABCD ,且点 C 和点 D 均在格点上(画出一个即可).

(2)在图2中画出以 AB 为对角线的正方形 AEBF ,且点 E 和点 F 均在格点上.

(1)计算: ( 1 + a ) ( 1 - a ) + ( a + 3 ) 2

(2)解不等式组: 2 x + 1 < 9 3 - x 0

如图,在菱形 ABCD 中, ABC 是锐角, E BC 边上的动点,将射线 AE 绕点 A 按逆时针方向旋转,交直线 CD 于点 F

(1)当 AE BC EAF = ABC 时,

①求证: AE = AF

②连结 BD EF ,若 EF BD = 2 5 ,求 S ΔAEF S 菱形 ABCD 的值;

(2)当 EAF = 1 2 BAD 时,延长 BC 交射线 AF 于点 M ,延长 DC 交射线 AE 于点 N ,连结 AC MN ,若 AB = 4 AC = 2 ,则当 CE 为何值时, ΔAMN 是等腰三角形.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号