已知圆锥的底面积和它的侧面积之比为,求侧面展开后所得扇形的圆心角的度数。
解方程:
计算:
如图1, 矩形铁片ABCD中,AD="8," AB="4;" 为了要让铁片能穿过直径为3.8的圆孔, 需对铁片进行处理 (规定铁片与圆孔有接触时铁片不能穿过圆孔).
(1)直接写出矩形铁片ABCD的面积;
(2)如图2, M、N、P、Q分别是AD、AB、BC、CD的中点,将矩形铁片的四个角去掉.
①证明四边形MNPQ是菱形;
②请你通过计算说明四边形铁片MNPQ能穿过圆孔.
(3)如图3, 过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合), 沿着这条直线将矩形铁片切割成两个全等的直角梯形铁片.当BE=DF=1时,判断直角梯形铁片EBAF能否穿过圆孔, 并说明理由.
已知抛物线过点(8,0),
(1)求的值;
(2)如图,在抛物线内作矩形ABCD,使点C、D落在抛物线上,点A、B落在
轴上,设矩形ABCD的周长为L,求L的最大值;
(3)如图,抛物线的顶点为E,对称轴与直线
交于点F.将直线EF向右平移
个单位后(
>0),交直线
于点M,交抛物线于点N,若以E、F、M、N为顶点的四边形是平行四边形,求
的值.