平面内与两定点连线的斜率之积等于非零常数的点的轨迹,加上 两点,所成的曲线可以是圆,椭圆或双曲线.(I)求曲线的方程,并讨论的形状与值的关系.(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,若曲线的斜率为的切线与曲线相交于两点,且(为坐标原点),求曲线的方程.
已知直线与椭圆相交于两个不同的点,记与轴的交点为. (Ⅰ)若,且,求实数的值; (Ⅱ)若,求面积的最大值,及此时椭圆的方程.
在四棱锥中,平面,是正三角形,与的交点恰好是中点,又,,点在线段上,且. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值.
已知函数. (Ⅰ)求函数的最小正周期; (Ⅱ)当,求函数的值域.
抛物线:,直线:交于点,交准线于点.过点的直线与抛物线有唯一的公共点(,在对称轴的两侧),且与轴交于点. (Ⅰ)求抛物线的准线方程; (Ⅱ)求的取值范围.
已知,函数. (Ⅰ)当时,求函数的最小值; (Ⅱ)当时,讨论的图象与的图象的公共点个数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号