选修4—5;不等式选讲.设函数.
(Ⅰ)解不等式;
(Ⅱ)对于实数,若
,求证
.
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是,并经过点
,求此双曲线的标准方程.
在平面直角坐标系中,有三个点的坐标分别是.
(1)证明:A,B,C三点不共线;
(2)求过A,B的中点且与直线平行的直线方程;
(3)设过C且与AB所在的直线垂直的直线为,求
与两坐标轴围成的三角形的面积.
设直线与直线
交于
点.
(1)当直线过
点,且与直线
垂直时,求直线
的方程;
(2)当直线过
点,且坐标原点
到直线
的距离为
时,求直线
的方程.
已知函数y=xlnx+1.
(1)求这个函数的导数;
(2)求这个函数的图象在点x=1处的切线方程.
设p:实数x满足<0,其中a<0;q:实数x满足x2-x-6≤0或x2+2x-8>0,且
p是
q的必要不充分条件,求a的取值范围.