.(本小题满分15分)已知函数是定义在
上的奇函数,
当时,
.
(Ⅰ)求当时,函数
的表达式;
(Ⅱ)求满足的
的取值范围;
(Ⅲ)已知对于任意的,不等式
恒成立,求证:函数
的图象与直线
没有交点.
(本小题满分12分)某市公租房的房源位于三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任意4位申请人中:
(1)恰有2人申请片区房源的概率;
(2)申请的房源所在片区的个数的分布列和期望.
(本小题满分12分)如图,在多面体中,底面
是边长为
的的菱形,
,四边形
是矩形,平面
平面
,
,
和
分别是
和
的中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求二面角的大小.
(本小题满分12分)已知的三个内角
所对的边分别为
,向量
,
,且
.
(1)求角A的大小;
(2)若,求
(本小题满分14分)已知椭圆:
与抛物线
:
有相同焦点
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线过椭圆
的另一焦点
,且与抛物线
相切于第一象限的点
,设平行
的直线
交椭圆
于
两点,当△
面积最大时,求直线
的方程.
(本小题满分13分)已知函数(
)
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,求
在
上的最大值和最小值(
);
(Ⅲ)求证:.