如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C(___,___),B→C(___,___),C→(-3,-4);
(2)若贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;
(3)若贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(-2,-1),(+2,+3),(-1,-2),请在图中标出妮妮的位置E点.
(4)在(3)中贝贝若每走1需消牦1.5焦耳的能量,则贝贝寻找妮妮过程中共需消耗多少焦耳的能量?
对于任何实数x,点M(x,x-1)一定不在第几象限?
在直角坐标系中,有四个点A(-8,3),B(-4,5),C(0,n),D(m,0),当四边形ABCD的周长最短时,求的值.
求证:不论k为何值,一次函数(2k-1)x- (k+3)y-(k-11)=0的图像恒过一定点.
如图,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E,与AB相切于点F,连接EF。
(1)判断EF与AC的位置关系(不必说明理由);;
(2)如图(2),过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由。
(3)求证:AC与GE的交点O为此圆的圆心.
如图,点A、B、D、在⊙O上,弦AE、BD的延长线相交于点C.。若AB是⊙O的直径,D是BC的中点.
(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,△ABC还需满足什么条件,点E才一定是AC的中点?(直接写出结论)