游客
题文

(本题满分l2分)某校学生到距离学校12km的科技馆,出租车的收费标准如下:出租车的行程在3km以内(包括3km),收费为4.5元;3km以上每增加1km(不足1km以1km计算)另收费0.5元.
(1)写出出租车行驶的里程数≥3km)与费用(元)之间的函数关系式.
(2)身上仅有10元钱,乘出租车到科技馆的车费够不够?
(3)如果出租车行驶了7.4km,问该收多少钱?

科目 数学   题型 计算题   难度 中等
知识点: 含绝对值的一元一次不等式
登录免费查看答案和解析
相关试题

解不等式组: x + 1 < 5 2 ( x + 4 ) > 3 x + 7

计算: ( 3 ) 2 + | - 2 | - ( π - 2 ) 0

定义:若实数 x y 满足 x 2 = 2 y + t y 2 = 2 x + t ,且 x y t 为常数,则称点 M ( x , y ) 为“线点”.例如,点 ( 0 , - 2 ) ( - 2 , 0 ) 是“线点”.已知:在直角坐标系 xOy 中,点 P ( m , n )

(1) P 1 ( 3 , 1 ) P 2 ( - 3 , 1 ) 两点中,点   是“线点”;

(2)若点 P 是“线点”,用含 t 的代数式表示 mn ,并求 t 的取值范围;

(3)若点 Q ( n , m ) 是“线点”,直线 PQ 分别交 x 轴、 y 轴于点 A B ,当 | POQ - AOB | = 30 ° 时,直接写出 t 的值.

已知:二次函数 y = x 2 - 4 x + 3 a + 2 ( a 为常数).

(1)请写出该二次函数的三条性质;

(2)在同一直角坐标系中,若该二次函数的图象在 x 4 的部分与一次函数 y = 2 x - 1 的图象有两个交点,求 a 的取值范围.

如图,在 Rt Δ ABC 中, ACB = 90 ° A = 30 ° BC = 1 ,以边 AC 上一点 O 为圆心, OA 为半径的 O 经过点 B

(1)求 O 的半径;

(2)点 P 为劣弧 AB 中点,作 PQ AC ,垂足为 Q ,求 OQ 的长;

(3)在(2)的条件下,连接 PC ,求 tan PCA 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号