某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为80,90
、
90,100
、
100,110
、
110,120
、
120,130
,由此得到两个班测试成绩的频率分布直方图:
(1)完成下面2×2列联表,你能有97.5的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
|
成绩小于100分 |
成绩不小于100分 |
合计 |
甲班 |
![]() |
![]() |
50 |
乙班 |
![]() |
![]() |
50 |
合计 |
![]() |
![]() |
100 |
(2)根据所给数据可估计在这次测试中,甲班的平均分是105.8,请你估计乙班的平均分,并计算两班平均分相差几分?
附:,其中
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.204 |
6.635 |
7.879 |
10.828 |
设满足约束条件
若目标函数
的最大值为10,则
的最小值为
抛物线处的切线与抛物线以及
轴所围成的曲边图形的面积为
(本小题满分12分)已知,函数
,
.
(1)若曲线与曲线
在它们的交点
处的切线重合,求
,
的值;
(2)设,若对任意的
,且
,都有
,求
的取值范围.
(本小题满分12分)已知椭圆C:过点
,离心率为
,点
分别为其左右焦点.
(1)求椭圆C的标准方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点,且
?若存在,求出该圆的方程;若不存在,请说明理由.
(本小题满分12分)从某小区抽取100个家庭进行月用电量调查,发现其月用电量都在50度至350度之间,频率分布直方图如图所示.
(1)根据直方图求的值,并估计该小区100个家庭的月均用电量(同一组中的数据用该组区间的中点值作代表);
(2)从该小区已抽取的100个家庭中, 随机抽取月用电量超过300度的2个家庭,参加电视台举办的环保互动活动,求家庭甲(月用电量超过300度)被选中的概率.