已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(O为坐标原点),当< 时,求实数取值范围.
如图,是以为直径的半圆上异于点的点,矩形所在的平面垂直于该半圆所在平面,且 (Ⅰ)求证:; (Ⅱ)设平面与半圆弧的另一个交点为, ①求证://; ②若,求三棱锥E-ADF的体积.
已知函数试讨论的单调性.
已知的顶点,顶点在直线上; (Ⅰ)若求点的坐标; (Ⅱ)设,且,求角.
设函数,其中. (1)若,求在的最小值; (2)如果在定义域内既有极大值又有极小值,求实数的取值范围; (3)是否存在最小的正整数,使得当时,不等式恒成立.
在中,为线段上一点,且,线段. (1)求证: (2)若,,试求线段的长.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号