游客
题文

(本题满分10分)
已知抛物线上横坐标为的点到焦点的距离为
(I)求抛物线的方程;
(II)若斜率为的直线与抛物线交于两点,且点在直线的右上方,求证:△的内心在直线上;
(III)在(II)中,若,求的内切圆半径长.

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

如图,储油灌的表面积为定值,它的上部是半球,下部是圆柱,半球的半径等于圆柱底面半径.

⑴试用半径表示出储油灌的容积,并写出的范围.
⑵当圆柱高与半径的比为多少时,储油灌的容积最大?

如图,直三棱柱中,点上一点.

⑴若点的中点,求证平面
⑵若平面平面,求证.

已知命题表示双曲线,命题表示椭圆.
⑴若命题为真命题,求实数的取值范围.
⑵判断命题为真命题是命题为真命题的什么条件(请用简要过程说明是“充分不必要条件”、“必要不充分条件”、“充要条件”和 “既不充分也不必要条件”中的哪一个).

根据我国发布的《环境空气质量指数技术规定》(试行),共分为六级:为优,为良,为轻度污染,为中度污染,均为重度污染,及以上为严重污染.某市2013年11月份天的的频率分布直方图如图所示:

⑴该市11月份环境空气质量优或良的共有多少天?
⑵若采用分层抽样方法从天中抽取天进行市民户外晨练人数调查,则中度污染被抽到的天数共有多少天?
⑶空气质量指数低于时市民适宜户外晨练,若市民王先生决定某天早晨进行户外晨练,则他当天适宜户外晨练的概率是多少?

在平面直角坐标系中,已知点是动点,且的三边所在直线的斜率满足
(1)求点的轨迹的方程;
(2)若是轨迹上异于点的一个点,且,直线交于点,问:是否存在点,使得的面积满足?若存在,求出点的坐标;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号