.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为,右焦点
,双曲线的实轴为
,
为双曲线上一点(不同于
),直线
,
分别与直线
交于
两点
(1)求双曲线的方程;
(2)是否为定值,若为定值,求出该值;若不为定值,说明理由。
(本小题13分)已知定义在的奇函数满足:①
;②对任意
均有
;③对任意
,均有
.
(Ⅰ)求的值;
(Ⅱ)证明:在
上为增函数;
(Ⅲ)是否存在实数k,使得对任意的
恒成立?若存在,求出的k范围;若不存在说明理由.
(本小题12分)已知函数.
(Ⅰ)若是偶函数,求实数m的值;
(Ⅱ)当时,关于x的方程
在区间
上恰有两个不同的实数解,求m的范围.
(本小题12分)已知函数.
(Ⅰ)当时,把
的图像向右平移
个单位得到函数
的图像,求函数
的图像的对称中心坐标;
(Ⅱ)设,若
的图象与直线
的相邻两个交点之间的距离为π,求
的值,并求函数
的单调递增区间.
(本小题13分)已知函数在区间[-1,2]上的最大值是最小值的8倍.
(Ⅰ)求a的值;
(Ⅱ)当a>1时,解不等式.
(本小题13分)平面内给定三个向量,
,
.
(Ⅰ)设向量,且
,求向量
的坐标;
(Ⅱ)若,求实数k的值.