小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2:00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP(图2)的夹角记为y1,时针与OP的夹角记为y2度(夹角是指不大于平角的角),旋转时间记为t分钟.观察结束后,他利用获得的数据绘制成图象(图3),并求出y1与t的函数关系式:
请你完成:求出图3中y2与t的函数关系式;
直接写出A、B两点的坐标,并解释这两点的实际意义;
若小华继续观察一个小时,请你在题图3中补全图象.
甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:吨/公顷):
品种 |
第1年 |
第2年 |
第3年 |
第4年 |
第5年 |
甲 |
9.8 |
9.9 |
10.1 |
10 |
10.2 |
乙 |
9.4 |
10.3 |
10.8 |
9.7 |
9.8 |
为使水稻品种的产量比较稳定,根据题中所给的数据,你选择哪种水稻品种?请说明理由.
如图,是⊙O的一条弦,
,垂足为C,交⊙O于点D,点E在⊙O上.
(1)若,求
的度数;
(2)若,
,求
的长.
如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m。试以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系,求题中抛物线的函数表达式.
已知反比例函数.
(1)画出该函数的大致图象。
(2)这个函数的大致图象位于哪些象限?函数值y随自变量x的增大如何变化?
解下列方程
(1)
(2)