(本题满分15分) 已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.(1)求抛物线的方程;(2)已知动直线过点,交抛物线于、两点.若直线的斜率为1,求的长;是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.
已知数列的前项和为且 (1)证明:数列是等比数列。 (2)若数列满足且求数列的通项公式。
已知等差数列满足 (1)求数列的通项公式 (2)求数列的前n项和
在中,角所对的边分别是,已知 (1)若的面积等于,求 (2)若,求的面积。
已知函数 (1)求不等式的解集; (2)若关于的不等式恒成立,求实数的取值范围.
设函数 (1)设,,证明:在区间内存在唯一的零点; (2)设,若对任意,有,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号