已知函数f(x)=x
-ax+(a-1)
,
。
(1)讨论函数的单调性;
(2)证明:若,则对任意x
,x
,x
x
,有
。
如图,四棱锥的底面是直角梯形,
,
,
和
是两个边长为
的正三角形,
,
为
的中点,
为
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求直线与平面
所成角的正弦值.
某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.
(Ⅰ) 求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ) 用表示4名乘客在第4层下电梯的人数,求
的分布列和数学期望.
已知函数的最小正周期为
.
(Ⅰ)求的值;
(Ⅱ)求函数的单调区间及其图象的对称轴方程.
(本小题满分14分)如图,在一个由矩形与正三角形
组合而成的平面图形中,
现将正三角形
沿
折成四棱锥
,使
在平面
内的射影恰好在边
上.
(1)求证:平面⊥平面
;
(2)求直线与平面
所成角的正弦值.
|
已知是实数,
是抛物线
的焦点,直线
.
(1)若
,且
在直线
上,求抛物线
的方程;
(2)当时,设直线
与抛物线
交于
两点,过
分别作抛物线
的准线的垂线,垂足为
,连
交
轴于点
,连结
交
轴于点
.
①证明:⊥
;
②若与
交于点
,记△
、四边形
、△
的面积分别为
,问
是否存在实数
,使
成立?若存在,求出
的值;若不存在,请说明理由.