.(本小题满分12分)
某种产品的广告费支出
与销售额
(单位:万元)之间有如下对应数据:
![]() |
2 |
4 |
5 |
6 |
8 |
![]() |
30 |
40 |
60 |
50 |
70 |
(Ⅰ)求回归直线方程;
(Ⅱ)试预测广告费支出为10万元时,销售额多大?
(Ⅲ)在已有的五组数据中任意抽取两组,求至少有一组数据其预测值与实际值之差的绝对
值不超过5的概率。(参考数据:
)
某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的重量(单位:克),重量的分组区间为
,
,…,
,由此得到样本的频率分布直方图,如右图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设
为重量超过505克的产品数量,求
的分布列.
(3)从流水线上任取5件产品,求恰有2件产品的重量超过505克的概率
已知向量
,
,函数
,
.
(Ⅰ)求函数
的最小正周期;
(Ⅱ)在
中,
分别是角
的对边,且
,
,
,且
,求
的值.
(本小题满分14分)已知函数
.
(Ⅰ)当
时,求
的单调递增区间;
(Ⅱ)求证:曲线
总有斜率为
的切线;
(Ⅲ)若存在
,使
成立,求
的取值范围.
如图,已知
为平行四边形,
,
,
,点
在
上,
,
,
交
于点
,现将四边形
沿
折起,使点
在平面
上的射影恰在直线
上.
(Ⅰ) 求证:
平面
;
(Ⅱ) 求折后直线
与直线
所成角的余弦值;
(Ⅲ) 求三棱锥
的体积.
(本小题满分12分)
已知向量
(1)求a·b及|a+b|;
(2)若
的最小值是
,求实数
的值。