在中,已知内角
所对的边分别为
,向量
,且
//
,
为锐角.
(1)求角的大小; (2)设
,求
的面积
的最大值.
(本小题满分12分)
从某校高三年级800名男生中随机抽取50名学生测量其身高,据测量被测学生的身高全部在155cm到195cm之间.将测量结果按如下方式分成8组:第一组[155,160),第二组[160,165),……,第八组[190,195],如下图是按上述分组得到的频率分布直方图的一部分.已知:第1组与第8组的人数相同,第6组、第7组和第8组的人数依次成等差数列.
⑴求下列频率分布表中所标字母的值,并补充完成频率分布直方图;
分组 |
频数 |
频率 |
频率/组距 |
… |
… |
… |
… |
[180,185) |
![]() |
![]() |
z |
[185,190) |
m |
n |
p |
… |
… |
… |
… |
⑵若从身高属于第6组和第8组的所有男生中随机的抽取2名男生,记他们的身高分别为x、y,求满足:|x-y|≤ 5事件的概率.
(本小题满分12分)
已知椭圆C:
+
=1(a>b>0)的离心率e=
,且椭圆经过点N(2,-3).
(1)求椭圆C的方程;
(2)求椭圆以M(-1,2)为中点的弦所在直线的方程.
(本小题满分12分)
如图,棱柱ABCD-A1B1C1D1的底面ABCD为菱形,平面AA1C1C⊥平面ABC D.
(1)证明:BD⊥AA1;
(2)证明:平面AB1C//平面DA1C1(3)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
(本小题满分12分)
已知:在△ABC中,a,b,c分别是角A、B、C所对的边,向量m=(2sin
,
),
n=(sin+
,1)且m·n=
.
(1)求角B的大小;
(2)若角B为锐角,a=6,S△ABC=6,求b的值.
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若,
,
,求方程
在区间
内的解集;
(2)若点是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)