对某电子元件进行寿命追踪调查,情况如下.
寿命(h) |
100~200 |
200~300 |
300~400 |
400~500 |
500~600 |
个 数 |
20 |
30 |
80 |
40 |
30 |
(1)列出频率分布表; (2)画出频率分布直方图;
(3)估计元件寿命在100~400 h以内的在总体中占的比例;
已知曲线C的极坐标方程为,直线
的参数方程为
(t为参数,
)
(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(2)若直线经过点
,求直线
被曲线C截得的线段AB的长。
已知在直角坐标系xOy中,曲线C的参数方程为(
为参数),直线
经过定点P(3,5),倾斜角为
(1)写出直线
的参数方程和曲线C的标准方程;(2)设直线
与曲线C相交于A、B两点,求
的值。
在平面直角坐标系中,以
为极点,
轴非负半轴为极轴建立坐标系,已知曲线
的极坐标方程为
,直线
的参数方程为:
(
为参数),两曲线相交于
两点.
(1)写出曲线的直角坐标方程和直线
的普通方程;
(2)若求
的值.
已知直线:
为参数), 曲线
(
为参数).
(1)设与
相交于
两点,求
;
(2)若把曲线上各点的横坐标压缩为原来的
倍,纵坐标压缩为原来的
倍,得到曲线
,设点
是曲线
上的一个动点,求它到直线
的距离的最小值.
已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:
(
是参数).
(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;
(2)若直线l与曲线C相交于A、B两点,且,试求实数m值.