.提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数
的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)
可以达到最大,并求出最大值(精确到1辆/小时)
已知奇函数,的
图象在x=2处的切线方程为
(I )求的解析式;
(II)是否存在实数,m,n使得函数
在区间
上的最小值为m,最大值为n.若存在,求出这样一组实数m,n,若不存在,则说明理由.
已知线段AB的两个端点A、B分别在轴、y轴上滑动,,点M满足
.
(I )求动点M的轨迹E的方程;
(II)若曲线E的所有弦都不能被直线垂直平分,求实数k的取值范围.
设是公比大于1的等比数列,
为数列
的前n项和,已知
,且
成等差数列.
(I )求数列的通项公式
;
(II)若,求和:
如图,三棱锥SABC中,SC丄底面ABC,,
,M
为SB中点,N在AB上,满足
(I)求点N到平面SBC的距离;
(II)求二面角C-MN-B的大小.
现有三种基本电子模块,电流能通过
的概率都是P,电流能否通过各模块相互独立.已知
中至少有一个能通过电流
的概率为0.999.现由该电子模块组装成某预警系统M(如图所示),针对系统M而言,只要有电流通过该系统就能正常工作.
(1)求P值
(II)求预警系统M正常工作的概率