游客
题文

解方程:x2-8x +1=0.

科目 数学   题型 解答题   难度 较易
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

已知方程组 2 x + y = 7 x = y - 1 的解也是关于 x y 的方程 ax + y = 4 的一个解,求 a 的值.

计算或化简:

(1) ( - 1 3 ) 0 + | 3 - 3 | + tan 60 °

(2) ( a + b ) ÷ ( 1 a + 1 b )

学习了图形的旋转之后,小明知道,将点 P 绕着某定点 A 顺时针旋转一定的角度 α ,能得到一个新的点 P ' ,经过进一步探究,小明发现,当上述点 P 在某函数图象上运动时,点 P ' 也随之运动,并且点 P ' 的运动轨迹能形成一个新的图形.

试根据下列各题中所给的定点 A 的坐标、角度 α 的大小来解决相关问题.

【初步感知】

如图1,设 A ( 1 , 1 ) α = 90 ° ,点 P 是一次函数 y = kx + b 图象上的动点,已知该一次函数的图象经过点 P 1 ( - 1 , 1 )

(1)点 P 1 旋转后,得到的点 P 1 ' 的坐标为   ( 1 , 3 )  

(2)若点 P ' 的运动轨迹经过点 P 2 ' ( 2 , 1 ) ,求原一次函数的表达式.

【深入感悟】

如图2,设 A ( 0 , 0 ) α = 45 ° ,点 P 是反比例函数 y = - 1 x ( x < 0 ) 的图象上的动点,过点 P ' 作二、四象限角平分线的垂线,垂足为 M ,求 ΔOMP ' 的面积.

【灵活运用】

如图3,设 A ( 1 , - 3 ) α = 60 ° ,点 P 是二次函数 y = 1 2 x 2 + 2 3 x + 7 图象上的动点,已知点 B ( 2 , 0 ) C ( 3 , 0 ) ,试探究 ΔBCP ' 的面积是否有最小值?若有,求出该最小值;若没有,请说明理由.

为了防控新冠疫情,某地区积极推广疫苗接种工作,卫生防疫部门对该地区八周以来的相关数据进行收集整理,绘制得到图表:

该地区每周接种疫苗人数统计表

周次

第1周

第2周

第3周

第4周

第5周

第6周

第7周

第8周

接种人数(万人)

7

10

12

18

25

29

37

42

根据统计表中的数据,建立以周次为横坐标,接种人数为纵坐标的平面直角坐标系,并根据以上统计表中的数据描出对应的点,发现从第3周开始这些点大致分布在一条直线附近,现过其中两点 ( 3 , 12 ) ( 8 , 42 ) 作一条直线(如图所示,该直线的函数表达式为 y = 6 x - 6 ) ,那么这条直线可近似反映该地区接种人数的变化趋势.

请根据以上信息,解答下列问题:

(1)这八周中每周接种人数的平均数为   万人;该地区的总人口约为   万人;

(2)若从第9周开始,每周的接种人数仍符合上述变化趋势.

①估计第9周的接种人数约为   万人;

②专家表示:疫苗接种率至少达 60 % ,才能实现全民免疫.那么,从推广疫苗接种工作开始,最早到第几周,该地区可达到实现全民免疫的标准?

(3)实际上,受疫苗供应等客观因素,从第9周开始接种人数将会逐周减少 a ( a > 0 ) 万人,为了尽快提高接种率,一旦周接种人数低于20万人时,卫生防疫部门将会采取措施,使得之后每周的接种能力一直维持在20万人.如果 a = 1 . 8 ,那么该地区的建议接种人群最早将于第几周全部完成接种?

某种落地灯如图1所示, AB 为立杆,其高为 84 cm BC 为支杆,它可绕点 B 旋转,其中 BC 长为 54 cm DE 为悬杆,滑动悬杆可调节 CD 的长度.支杆 BC 与悬杆 DE 之间的夹角 BCD 60 °

(1)如图2,当支杆 BC 与地面垂直,且 CD 的长为 50 cm 时,求灯泡悬挂点 D 距离地面的高度;

(2)在图2所示的状态下,将支杆 BC 绕点 B 顺时针旋转 20 ° ,同时调节 CD 的长(如图 3 ) ,此时测得灯泡悬挂点 D 到地面的距离为 90 cm ,求 CD 的长.(结果精确到 1 cm ,参考数据: sin 20 ° 0 . 34 cos 20 ° 0 . 94 tan 20 ° 0 . 36 sin 40 ° 0 . 64 cos 40 ° 0 . 77 tan 40 ° 0 . 84 )

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号