已知一元二次方程x2-4x+3=0的两根是m,n且m<n.如图12,若抛物线y=-x2+bx
+c的图像经过点A(m,0)、B(0,n).求抛物线的解析式.
若(1)中的抛物线与x轴的另一个交点为C.根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?
点P在线段OC上,作PE⊥x轴与抛物线交与点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.
如图1,已知四边形ABCD,点P为平面内一动点.如果∠PAD=∠PBC,那么我们称点P为四边形ABCD关于A、B的等角点. 如图2,以点B为坐标原点,BC所在直线为x轴建立平面直角坐标系,点C的横坐标为6.
(1)若A、D两点的坐标分别为A(0,4)、D(6,4),当四边形ABCD关于A、B的等角点P在DC边上时,则点P的坐标为;
(2)若A、D两点的坐标分别为A(2,4)、D(6,4),当四边形ABCD关于A、B的角点P在DC边上时,求点P的坐标;
(3)若A、D两点的坐标分别为A(2,4)、D(10,4),点P(x,y)为四边形ABCD关于A、B的等角点,其中x>2,y>0,求y与x之间的关系式.
当时,下列关系式中有且仅有一个正确.
A.
B.
C.
(1)正确的选项是;
(2)如图1,△ABC中, ,请利用此图证明(1)中的结论;
(3)两块分别含和
的直角三角板如图2方式放置在同一平面内,
,求
.
已知:在△ABC中,∠B为锐角,,AB=15,AC=13,求BC的长.
如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,tanC=.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数; (2)求AB的长.
如图,一枚运载火箭从地面O处发射,当火箭到达A点时,在观测点C测得其仰角是30°,火箭又上升了10km到达B点时,测得其仰角为60°,求观测点C到发射点O的距离.
(结果精确到0.1km.参考数据:).