如图,已知 是 的直径, 是 上的一点, 是 上的一点, 于 , 交 于 ,且 .
(1)求证: 是 的切线;
(2)若 , ,圆的半径 ,求切线 的长.
(本题8分)已知抛物线的图象经过点(﹣1,0),点(3,0);
(1)求抛物线函数解析式;
(2)求函数的顶点坐标.
(本题8分)如图,在△ABC中,AB=AC=8cm,∠BAC=120°.
(1)作△ABC的外接圆(只需作出图形,并保留作图痕迹);
(2)求它的外接圆半径.
如图,一次函数y=-x+4的图像与x轴、y轴分别相交于点A、B,过点A作x轴的垂线l,点P为直线l上的动点,点Q为直线AB与△OAP外接圆的交点,点P、Q与点A都不重合.
(1)写出点A的坐标 ;
(2)当点P在直线l上运动时,是否存在点P使得△OQB与△APQ全等?如果存在,求出点P的坐标;如果不存在,请说明理由.
(3)若点M在直线l上,且∠POM=90°,记△OAP外接圆和△OAM外接圆的面积分别是、
,求
的值.
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.
(1)求OA、OC的长;
(2)求证:DF为⊙O′的切线;
(3)由已知可得,△AOE是等腰三角形.那么直线BC上存不存在除点E以外的点P,使△AOP也是等腰三角形?如果不存在,说明理由;如果存在,直接写出P点的坐标.
射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如图(折线图中,粗线表示甲,细线表示乙):
(1)根据图中所提供的信息填写下表:
平均数 |
众数 |
方差 |
|
甲 |
7 |
||
乙 |
2.2 |
(2)请从下列四个不同的角度对测试结果进行分析:
①从平均数和方差结合看_______的成绩好;
②从平均数和众数结合看_______的成绩好;
③从折线图上两人射击环数的走势看_____更有潜力.
④如果你是教练,会选择哪位运动员参加比赛?说明理由.