游客
题文

设函数,其中
(1)当时,时取得极值,求
(2)当时,若上单调递增,求的取值范围;
(3)证明对任意的正整数,不等式都成立。

科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

一走廊拐角处的横截面如图所示,已知内壁和外壁都是半径为1m的四分之一圆弧,分别与圆弧相切于两点,且两组平行墙壁间的走廊宽度都是1m.
(1)若水平放置的木棒的两个端点分别在外壁上,且木棒与内壁圆弧相切于点试用表示木棒的长度
(2)若一根水平放置的木棒能通过该走廊拐角处,求木棒长度的最大值.

中,内角所对的边分别为.已知
(1)求角的大小;
(2)若,求的面积.

已知命题指数函数上单调递减,命题关于的方程的两个实根均大于3.若“”为真,“”为假,求实数的取值范围.

已知
,且为偶函数.
(1)求
(2)求满足的x的集合.

设函数
(1)若函数有且只有两个零点求实数的取值范围;
(2)当若曲线上存在横坐标成等差数列的三个点
①证明:为钝角三角形;
②试判断能否为等腰三角形并说明理由

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号