(本小题满分12分)如图所示,直角梯形ACDE与等腰直角所在平面互相垂直,F为BC的中点,
,AE∥CD,
.
(Ⅰ)求证:∥平面
;
(Ⅱ)求二面角的余弦值.
已知函数f(x)=x3-2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.
数列{an}的前n项和为Sn,a1=1,an+1-an-1=0,数列{bn}满足b1=2,anbn+1=2an+1bn.
(1)求S;
(2)求bn.
等差数列{an}中,公差d≠0,a2是a1与a4的等比中项,已知数列a1,a3,ak, ak
,…, ak
,…成等比数列.
(1)求数列{kn}的通项kn;
(2)求数列的前n项和Sn.
已知数列{an}满足2an+1=an+an+2 (n∈N*),它的前n项和为Sn,且a3=10,S6=72.若bn=an-30,求数列{bn}的前n项和的最小值.
数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列的前n项和,求Tn.