抛掷A,B,C三枚质地不均匀的纪念币,它们正面向上的概率如下表所示;
纪念币 |
A |
B |
C |
概率 |
![]() |
a |
a |
将这三枚纪念币同时抛掷一次,设表示出现正面向上的纪念币的个数。
(1)求的分布列及数学期
望;
(2)在概率中,若
的值最大,求a的最大值。
如图,已知离心率为的椭圆
过点M(2,1),O为坐标原点,平行于OM的直线
交椭圆C于不同的两点A、B。
(1)求椭圆C的方程。
(2)证明:直线MA、MB与x轴围成一个等腰三角形。
如图,在直三棱柱中,
,
,
是
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.
盒中装有个零件,其中
个是使用过的,另外
个未经使用.
(Ⅰ)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求
次抽取中恰有
次
抽到使用过的零件的概率;
(Ⅱ)从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为
,求
的分布列和数学期望.
已知函数,
.
(Ⅰ)求方程=0的根;
(Ⅱ)求的最大值和最小值.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点
处的切线的斜率为
,问:
在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
(Ⅲ)当时,设函数
,若在区间
上至少存在一个
,使得
成立,试求实数
的取值范围.