游客
题文

(本小题满分12分)三次函数的图象如图所示,直线BD∥AC,且直线BD与函数图象切于点B,交于点D,直线AC与函数图象切于点C,交于点A.
(1)若函数f(x)为奇函数且过点(1,-3),当x<0时求的最大值 ;
(2)若函数在x=1处取得极值-2,试用c表示a和b,并求的单调递减区间;
(3)设点A、B、C、D的横坐标分别为求证   

科目 数学   题型 解答题   难度 未知
登录免费查看答案和解析
相关试题

命题P:函数内单调递减;命题Q:曲线轴交于不同的两点.
如果“P\/Q”为真且“P/\Q”为假,求a的取值范围.

已知条件
条件
(Ⅰ)若,求实数的值;
(Ⅱ)若的充分条件,求实数的取值范围.

是否存在实数a,使函数的定义域为,值域为?若存在,求出a的值;若不存在,说明理由。

已知函数定义域为,若对于任意的,都有,且>0时,有>0.
⑴证明: 为奇函数;
⑵证明: 上为单调递增函数;
⑶设=1,若<,对所有恒成立,求实数的取值范围.

汽车和自行车分别从地和地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知米.(汽车开到地即停止)
(Ⅰ)经过秒后,汽车到达处,自行车到达处,设间距离为,试写出关于的函数关系式,并求其定义域.
(Ⅱ)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号