某厂家拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令
表示该公司的资助总额.
(Ⅰ)写出的分布列;
(Ⅱ)求数学期望.
已知函数.
(Ⅰ)当a = 3时,求不等式的解集;
(Ⅱ)若对
恒成立,求实数a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线过点P(-2,-4)的直线
为参数)与曲线C相交于点M,N两点.
(Ⅰ)求曲线C和直线的普通方程;
(Ⅱ)若|PM|,|MN|,|PN |成等比数列,求实数a的值.
如图,已知切⊙
于点E,割线PBA交⊙
于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.
求证:(Ⅰ); (Ⅱ)
.
已知函数=
,
=
,若曲线
和曲线
都过点P(0,2),且在点P处有相同的切线
.
(Ⅰ)求,
,
,
的值;
(Ⅱ)若≥-2时,
≤
,求
的取值范围.
设为实数,函数
(Ⅰ)求的单调区间与极值;
(Ⅱ)求证:当且
时,