如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后分别转动一次游戏转盘,得分情况记为
(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).
(Ⅰ)求某个家庭得分为的概率?
(Ⅱ)若游戏规定:一个家庭的得分为参与游戏的两人得分之和,且得分大于等于8的家庭可以获得一份奖品.请问某个家庭获奖的概率为多少?
(Ⅲ)若共有5个家庭参加家庭抽奖活动.在(Ⅱ)的条件下,记获奖的家庭数为,求
的分布列及数学期望.
已知函数,
,其中
,设
.
(Ⅰ) 判断的奇偶性,并说明理由;
(Ⅱ)当时,判断并证明函数
的单调性;
(Ⅲ) 若,且对于区间[3,4]上的每一个x的值,不等式
恒成立,求实数
的取值范围.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若把向右平移
个单位得到函数
,求
在区间
上的最小值和最大值.
已知<
<
<
,
(Ⅰ) 求的值;
(Ⅱ)求cos.
长虹网络蓝光电视机自投放市场以来,经过两次降价,单价由原来的20000元降到12800元。
(Ⅰ)求这种电视机平均每次降价的百分率,并写出年后该电视的价格
与
的函数关系式.
(Ⅱ)若按(1)中的平均降价百分率计算,问四年后该电视机的价格为多少元?
求下列各式的值.
(Ⅰ)
(Ⅱ)