10分)某太阳能热水器厂2007年的年生产量为670台,该年比上一年的年产量的
增长率为34%. 从2008年开始,以后的四年中,年生产量的增长率逐年递增2%(如,2008
年的年生产量的增长率为36%).
(1)求2008年该厂太阳能热水器的年生产量(结果精确到0.1台);
(2)求2011年该厂太阳能热水器的年生产量(结果精确到0.1台);
(3)如果2011年的太阳能热水器的实际安装量为1420台,假设以后若干年内太阳能热水
器的年生产量的增长率保持在42%,到2015年,要使年安装量不少于年生产量的95%,这四
年中太阳能热水器的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?
(参考数据:,
,1.5634="5.968" ).
向量.函数
.
(1)若,求函数
的单调减区间;
(2)将函数的图像向左平移
个单位得到函数
,如果函数
在
上至少存在2014个最值点,求
的最小值.
正四面体边长为2.
分别为
中点.
(1)求证:平面
;
((2))求的值.
如图,已知是⊙
的切线,
为切点.
是⊙
的一条割线,交⊙
于
两点,点
是弦
的中点.若圆心
在
内部,则
的度数为___.
函数.
(1)令,求
的解析式;
(2)若在
上恒成立,求实数
的取值范围;
(3)证明:.
椭圆以双曲线
的实轴为短轴、虚轴为长轴,且与抛物线
交于
两点.
(1)求椭圆的方程及线段
的长;
(2)在与
图像的公共区域内,是否存在一点
,使得
的弦
与
的弦
相互垂直平分于点
?若存在,求点
坐标,若不存在,说明理由.