.将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一个小球,称此为一轮“放球”,设一轮“放球”后编号为i(i=1,2,3)的纸箱放入的小球编号为ai,定义吻合度误差为=|1-a1|+|2-a2|+|3-a3|。假设a1,a2,a3等可能地为1、2、3的各种排列,求⑴某人一轮“放球”满足
=2时的概率。⑵
的数学期望。
用辗转相除法求108与45的最大公约数,再用更相减损术验证。
(本小题8分)在的展开式中,只有第6项的二项式系数最大
求:(1)n的值
(2)系数的绝对值最大的项是第几项?该项是什么?
(3)系数最大的项
(本小题满分8分)袋中有大小、形状相同的红、白球各一个,现依次有放回地随机摸取3次,每次摸取一个球.
(1)求三次颜色全相同的概率;
(2)若摸到红球时得2分,摸到白球时得1分,求3次摸球所得总分不小于5的概率.[来
(本小题满分8分)某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数,
(1)请列出X的分布列;
(2)根据你所列的分布列求选出的4人中至少有3名男生的概率
有4张分别标有数字1,2,3,4的红色卡片和2张分别标有数字1,2的蓝色卡片,从这6张卡片中取出不同的4张卡片.
(1)如果要求至少有1张蓝色卡片,那么有多少种不同的取法?
(2)如果取出的4张卡片所标数字之和等于10,并将它们排成一行,那么有多少种不同的排法?