有甲、乙两个均装有进水管和出水管的容器,水管的所有阀门都处于关闭状态.初始时,同时打开甲、乙两容器的进水管,两容器都只进水;到8分钟时,关闭甲容器的进水管,打开它的出水管,甲容器只出水;到16分钟时,再次打开甲容器的进水管,此时甲容器既进水又出水;到28分钟时,关闭甲容器的出水管,并同时关闭甲、乙两容器的进水管.已知两容器每分钟的进水量与出水量均为常数,图中折线O-A-B-C和线段DE分别表示两容器内的水量(单位:升)与时间
(单位:分)之间的函数关系,请根据图象回答下列问题:
(1) 甲容器的进水管每分钟进水______升,它的出水管每分钟出水______升;
(2) 求乙容器内的水量
与时间
的函数关系式;
(3) 求从初始时刻到最后一次两容器内的水量相等时所需的时间.
在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.
请根据以上内容解答下列问题:
(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图②,在矩形ABCD中,A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点.
如图,在平面直角坐标系中,△ABC的顶点坐标为A(-2,3)、B(-3,2)、C(-1,1).
(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;
(2)画出△A1B1C1绕原点旋转180°后得到的△A2B2C2;
(3)△A′B′C′与△ABC是位似图形,请写出位似中心的坐标:________;
(4)顺次连接C、C1、C′、C2,所得到的图形是轴对称图形吗?
已知:如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,并直接写出C1点的坐标;
(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.
如图,点A,B的坐标分别为(3,2),(6,4),AC⊥x轴于点C,BD⊥x轴于点D,分别以AC,BD为边作正方形ACEF和正方形BDGH.
(1)试分别写出直线AB和直线FH所对应的函数表达式.
(2)正方形ACEF和正方形BDGH是位似图形吗?请用位似图形的定义加以说明.
(3)在坐标系中作出正方形ACEF关于点O的对称正方形A′C′E′F′,正方形A′C′E′F′与正方形BDGH是位似图形吗?为什么?
一般在室外放映的电影胶片上图片的规格是3.5cm×3.5cm,放映的银屏的规格为2m×2m,若放映机的光源距胶片20cm,问:银屏拉在距离光源多远的地方时,放映的图象刚好布满整个银屏?