已知斜三棱柱的底面是直角三角形,
,侧棱与底面所成角为
,点
在底面上射影D落在BC上.
(Ⅰ)求证:平面
;
(Ⅱ)若点D恰为BC中点,且,求
的大小;
(III)若,且当
时,求二面角
的大小.
(本小题12分) 已知曲线的极坐标方程为
,曲线
的方程是
, 直线
的参数方程是:
.
(1)求曲线的直角坐标方程,直线
的普通方程;
(2)求曲线上的点到直线
距离的最小值.
(本小题12分) 命题p: 函数y=在(-1, +
)上单调递增, 命题
函数y=lg[
]的定义域为R.
(1)若“或
”为真命题,求
的取值范围;
(2)若“或
”为真命题,“
且
”为假命题,求
的取值范围.
点A、B分别是以双曲线的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方,
(1)求椭圆C的的方程;
(2)求点P的坐标;
(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。
2013年全国第十二届全运会由沈阳承办。城建部门计划在浑南新区建造一个长方形公园ABCD,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成。已知休闲区A1B1C1D1的面积为4000平方米,人行道的宽分别为4米和10米。
(1)若设休闲区的长米,求公园ABCD所占面积S关于
的函数
的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
点P是圆上的一个动点,过点P作PD垂直于
轴,垂足为D,Q为线段PD的中点。
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。