(本小题满分10分)
如图所示,在棱长为2的正方体中,点
分别在棱
上,满足
,
且.
(1)试确定、
两点的位置.
(2)求二面角大小的余弦值.
已知线段AB过轴上一点
,斜率为
,两端点A,B到
轴距离之差为
,
(1)求以O为顶点,轴为对称轴,且过A,B两点的抛物线方程;
(2)设Q为抛物线准线上任意一点,过Q作抛物线的两条切线,切点分别为M,N,求证:直线MN过一定点;
有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面数,用
表示更换费用。
(1)求①号面需要更换的概率;
(2)求6个面中恰好有2个面需要更换的概率;
(3)写出的分布列,求
的数学期望。
数列
满足
,
,
是常数。
(Ⅰ)当
时,求
及
的值;
(Ⅱ)数列
是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;
(Ⅲ)求
的取值范围,使得存在正整数
,当
时总有
。
已知
的顶点
在椭圆
上,
在直线
上,且
.
(Ⅰ)当
边通过坐标原点
时,求
的长及
的面积;
(Ⅱ)当
,且斜边
的长最大时,求
所在直线的方程。
甲、乙等五名奥运志愿者被随机地分到
四个不同的岗位服务,每个岗位至少有一名志愿者。
(Ⅰ)求甲、乙两人同时参加
岗位服务的概率;
(Ⅱ)求甲、乙两人不在同一个岗位服务的概率。