游客
题文

某校九年级一班数学调研考试成绩绘制成频数分布直方图,如图(得分取整数).
请根据所给信息解答下列问题:

这个班有多少人参加了本次数学调研考试?
分数段的频数和频率各是多少?
请你根据统计图,提出一个与(1),(2)不同的问题,并给出解答.

科目 数学   题型 解答题   难度 较易
知识点: 统计量的选择
登录免费查看答案和解析
相关试题

某校举行了"防溺水"知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).

班级

八(1)班

八(2)班

最高分

100

99

众数

a

98

中位数

96

b

平均数

c

94.8

(1)统计表中, a =     b =    c =   

(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.

先化简,再求值: ( x + 1 ) ( x - 1 ) + x ( 2 - x ) ,其中 x = 1 2

如图,抛物线 y = a x 2 + bx - 6 x 轴相交于 A B 两点,与 y 轴相交于点 C OA = 2 OB = 4 ,直线 l 是抛物线的对称轴,在直线 l 右侧的抛物线上有一动点 D ,连接 AD BD BC CD

(1)求抛物线的函数表达式;

(2)若点 D x 轴的下方,当 ΔBCD 的面积是 9 2 时,求 ΔABD 的面积;

(3)在(2)的条件下,点 M x 轴上一点,点 N 是抛物线上一动点,是否存在点 N ,使得以点 B D M N 为顶点,以 BD 为一边的四边形是平行四边形,若存在,求出点 N 的坐标;若不存在,请说明理由.

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OA = OC OB = OD + CD

(1)过点 A AE / / DC BD 于点 E ,求证: AE = BE

(2)如图2,将 ΔABD 沿 AB 翻折得到 ΔAB D '

①求证: B D ' / / CD

②若 A D ' / / BC ,求证: C D 2 = 2 OD · BD

如图,在 ΔABC 中, AB = AC ,以 AB 为直径的 O BC 相交于点 D ,过点 D O 的切线交 AC 于点 E

(1)求证: DE AC

(2)若 O 的半径为5, BC = 16 ,求 DE 的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号