某校九年级一班数学调研考试成绩绘制成频数分布直方图,如图(得分取整数).
请根据所给信息解答下列问题:这个班有多少人参加了本次数学调研考试?
~
分数段的频数和频率各是多少?
请你根据统计图,提出一个与(1),(2)不同的问题,并给出解答.
某校举行了"防溺水"知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).
班级 |
八(1)班 |
八(2)班 |
最高分 |
100 |
99 |
众数 |
|
98 |
中位数 |
96 |
|
平均数 |
|
94.8 |
(1)统计表中, , , ;
(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.
先化简,再求值: ,其中 .
如图,抛物线 与 轴相交于 , 两点,与 轴相交于点 , , ,直线 是抛物线的对称轴,在直线 右侧的抛物线上有一动点 ,连接 , , , .
(1)求抛物线的函数表达式;
(2)若点 在 轴的下方,当 的面积是 时,求 的面积;
(3)在(2)的条件下,点 是 轴上一点,点 是抛物线上一动点,是否存在点 ,使得以点 , , , 为顶点,以 为一边的四边形是平行四边形,若存在,求出点 的坐标;若不存在,请说明理由.
如图1,四边形 的对角线 , 相交于点 , , .
(1)过点 作 交 于点 ,求证: ;
(2)如图2,将 沿 翻折得到 .
①求证: ;
②若 ,求证: .
如图,在 中, ,以 为直径的 与 相交于点 ,过点 作 的切线交 于点 .
(1)求证: ;
(2)若 的半径为5, ,求 的长.