(本小题满分15分)
已知函数
(1)当a=1时,求函数在点(1,-2)处的切线方程;
(2)若函数在
上的图象与直线
总有两个不同交点,求实数a的取值范围。
(本题满分12分)
如图,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10
海里,问乙船每小时航行多少海里?
已知数列的通项公式为
,数列
的前n项和为
,且满足
(I)求的通项公式;
(II)在中是否存在使得
是
中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.
是否存在常数,使得函数
在闭区间
上的最大值为1?若存在,求出对应的
值;若不存在,说明理由.
已知定义域为的函数
是奇函数。
(Ⅰ)求的值;
(Ⅱ)解不等式
为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),
如图所示,根据图中提供的信息,回答下列问题:
(Ⅰ)从药物释放开始,求每立方米空气中的含药量
y(毫克)与时间t(小时)之间的函数关系式?
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.