(本小题满分12分)
如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合)PQ⊥AB,垂足为Q.设PC=x,PQ= y.⑴求y与x的函数关系式;
⑵试确定此RtΔABC内切圆I的半径,并探求x为何值时,直线PQ与这个内切圆I相切?
⑶若0<x<1,试判断以P为圆心,半径为y的圆与⊙I能否相内切,若能求出相应的x的值,若不能,请说明理由.
我市在进行城南改造时,欲拆除河边的一根电线杆AB(如图),已知距电线杆AB水平距离16米处是河岸,即BD=16米,该河岸的坡面CD的坡角∠CDF的正切值为2(即tan∠CDF=2),岸高CF为4米,在坡顶C处测得杆顶A的仰角为30°,D、E之间是宽3米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心、AB长为半径的圆形区域为危险区域,精确到0.1m)
“校园手机”现象越来越受到社会的关注.“寒假”期间,记者小刘随机调查了某区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:求这次调查的家长人数,并补全图①;
求图②中表示家长“赞成”的圆心角的度数
若该区共有中学生8000人,请根据以上图表信息估算出该区中学生中对“校园手机”持“无所谓”态度的人数是多少?
在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.用树状图或列表法表示出(x,y)的所有可能出现的结果;
求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率.
如图1,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,连接AE. AC和BE相交于点O.
解方程