图,已知△PDC是⊙O的内接三角形,CP=CD,若将△PCD绕点P顺时针旋转,当点C刚落在⊙O上的A处时,停止旋转,此时点D落在点B处.求证:PB与⊙O相切;
当PD=2
, ∠DPC=30°时,求⊙O的半径长.
已知AB为⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD于D,连接BC,求证BC平分∠PBD.
已知a+b=-5,ab=1,求的值.
解方程:(1)x2-3x-5=0(用配方法);(2)(2x-3)2=x2.
如图所示,直角坐标系内,A(-4,3),B(-2,0),C(-1,2),请你在图中画出△ABC关于原点O的对称的图形即△A′B′C′,并写出A′、B′、C′的坐标,求出△A′B′C′的面积.
已知:如图,直线与x轴相交于点A,与直线
相交于点P.动点E从原点O出发,以每秒1个单位长度的速度沿着OPA的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分面积为S.
(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)请探究S与t之间的函数关系式,并指出t的取值范围.