设函数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)设函数求证:当
某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为
,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分
的分布列与数学期望
.
已知平面内一动点(
)到点
的距离与点
到
轴的距离的差等于1,
(1)求动点的轨迹
的方程;
(2)过点的直线
与轨迹
相交于不同于坐标原点
的两点
,求
面积的最小值.
已知函数.
(1)当函数在点
处的切线与直线
垂直时,求实数
的值;
(2)若时,
恒成立,求实数
的取值范围.
已知书架中甲层有英语书2本和数学书3本,乙层有英语书1本和数学书4本.现从甲、乙两层中各取两本书.
(1)求取出的4本书都是数学书的概率.
(2)求取出的4本书中恰好有1本是英语书的概率.
已知向量
(1)求的值;
(2)若且
,求
的值.